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We formulate the linearized generalized Boltzmann equation as an (asymmetric) 
eigenvalue problem. This problem has five eigenvalues which tend to zero when the 
uniformity parameter tends to zero: to second order in this parameter, they correspond 
to damped sound (two modes), diffusing shear flow (two modes), and diffusing entropy 
flow (one mode). The microscopic expressions deduced from these results for the 
transport coefficients agree with the correlation-function formulas. Moreover, the 
corresponding eigenfunctions are explicitly displayed to lowest order in the uniformity 
parameter: they are microscopic analogs, in terms of one-particle distribution functions, 
of the well-known linearized hydrodynamic modes of macroscopic physics. All results 
are established to all orders in the interactions. 

KEY W O R D S :  Generalized Boltzmann equation; hydrodynamic modes; transport 
coefficients; autocorrelation function formulas. 

t .  I N T R O D U C T I O N  

Linearized hydrodynamic  modes are well known in macroscopic  physics. Let  us con- 
sider the Laplace-Four ie r  t ransform of  the linearized hydrodynamic  equations (1,2) 

--i~onq(~o) § iqngq(~o) = n,(t = 0) (continuity equation) (1) 

l a p  . 1 /  6p k 
--icog,(o~) + iq n (~n)v n,(co) + tq n ~-b-T-), Tq(cO) -~- ~ [q(qg,(co)) + q2gq(w)] 

+ (~ - -  ~ )  [q(qgq(~o))] : gq(t : 0) (Navier-Stokes equation) (2) 
n 

T 
( ~ p  ).~ ~c  q2T,(oj)__ T,(t : O) --ioJT,(oJ) + iq~c-f, g,(~o) + 

(temperature equation) (3) 
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In these equations, n, p, T, and C. respectively denote the equilibrium density, 
pressure, temperature, and specific heat at constant volume; ~7 and ~ are the shear and 
bulk viscosity, and K is the thermal conductivity. Moreover, nq(co), gq(o)), and Tq(oJ) 
are the Laplace-Fourier transforms of the local particle density, local momentum 
(we always take the mass m = 1), and local temperature; for instance, one has 

oo 

nq(o)) = f dt e ~~ f dar (exp --iqr) 8n(r, t) (4) 
0 

where 3n(r, t) is the density fluctuation at point r and time t; similar definitions hold 
for gq(co) and T,(co). 

Although the concept of hydrodynamic mode can be formulated in various ways, 
the most direct one is probably to formally consider the five conserved quantities, 
nq(oJ), g~(~o), Tq(co), as the components of a vector in a five-dimensional space. The 
solution of Eqs. (1)-(3) is then easily reduced to the calculation of the eigenvalues and 
eigenvectors of the homogeneous problem associated with these equations. This eigen- 
value problem is equivalent to the diagonalization of a (5 • 5)(non-Hermitian) 
matrix; this is readily done and one finds, in the small q-limit and assuming for con- 
venience that q is oriented along the x axis, the following eigenvalues: 

A~ = --q2~7/n (5a) 

2tz = --q~l/n (5b) 

~• = =kicq --  q2F (5c) 

A:v = --q~:/nC~, (5d) 

where 

1 1 1 

and e is the sound velocity: 
c, (o1,  

c2 = ~ \~n/T (7) 

Clearly, Au and A~ express the viscous damping of the shear-velocity modes, the 
Ai describe damped sound-wave propagations, and Ar corresponds to the diffusion of 
the thermal mode. The right and left eigenfunctions corresponding to these modes are 
also easily constructed. However, as we shall not need them and as similar modes will 
be calculated later from a microscopic viewpoint, we shall not display them here. 

This concept of macroscopic modes has been used in statistical physics in at least 
two important respects: 

1. It has served in finding a microscopic definition of transport coefficients (the 
so-called autoeorrelation function formulas) by identifying the equations of motion 
for the average value of the microscopic operators describing the five conserved 
quantities (in a state taken initially to be the local equilibrium) with the macroscopic 
system (1)-(3). This is, for instance, the point of view adopted by Mori 13-5) and by 
Kadanoff and Martin.l~) 
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2. It has also been very useful in the analysis of a series of problems involving 
long-wavelength divergences. Leaving aside the case of long-range forces, we can cite: 

(i) The nonanalytic density expansion of transport coefficients (Kawasaki and 
Oppenheim("); for a recent review, see Ernst et al.(7)); here, we should mention the 
recent work of Pomeau, (8) who has shown that, in order to treat properly the diver- 
gence problem in a two-dimensional system, one should carefully take into account 
the long-wavelength propagation of hydrodynamic modes. 

(ii) The critical behavior of transport coefficients (see, e.g., Rrsibois(9~); here 
again, the long-distance propagation of  hydrodynamic modes plays a crucial role in 
the determination of the singularities in transport coefficients close to the critical 
point, as appears clearly in the works of  Fixman, (1~ Kawasaki, (11) and Kadanoff and 
Swift.(z2) 

(iii) The van Hove time-dependent correlation function. (1.) The long-wavelength, 
low-frequency behavior of this function, which is of particular importance, has 
usually been evaluated from the macroscopic equations (1)-(3); this was done by 
van Hove himself, and later on by Kadanoff and Martin (2) and by Mountain. (14) 

Although these works share the feature of using hydrodynamic concepts in problems 
of  statistical physics, they use this idea in very different ways. For instance, in the 
work of van Hove (~) and Mountain, (~4) it is assumed, with no more than heuristic 
justification, that macroscopic laws can be used to describe the t ime--dependent 
density-density correlation function; on the other hand, in the work of Mori and of 
Kadanoff and Swift, microscopic hydrodynamic modes are explicitly constructed in 
terms of the complete equilibrium N-particle distribution function; finally, in the 
work of Pomeau, microscopic hydrodynamic modes are defined in terms of  a one- 
particle distribution function, but for a dilute gas only where effects due to the poten- 
tial energy between the particles can be neglected. 

The generalization of this latter work, namely the definition of  statistical hydro- 
dynamic modes in terms of  one-particle functions but for a strongly interacting system, 
would be a very useful tool in the microscopic analysis of  the abovementioned 
divergence problems. Indeed, it appears clearly that a full understanding of these 
questions, in particular, the critical behavior of transport coefficients, requires a 
detailed analysis of the many-body dynamical problem; such an analysis can only be 
carried through if one can think, and calculate, in terms of one-body quantities. 2 
The aim of the present paper is to offer such a tool. 

Before giving an outline of our work, let us still recall that the calculation of trans- 
port coefficients is traditionally based on the generalized Boltzmann equation obeyed 
by the one-particle distribution function f~(r~, vl; t) (ls-~9) We formally write this 
equation as 

~f~ = C(fO (8) OJx(r 1 , v 1 ; t) q- vl 

For instance, the whole diagrammatic analysis of the N-body problem rests heavily upon a descrip- 
tion in terms of one-body "propagators" (see, e.g., Abrikosov et al. (15~ vs Prigogine t16) and Rrsibois (17~ 
for two very different formulations in terms of graphs). 
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where C denotes the nonlinear collision operator (which may eventually be nonlocal 
in space and in time). Using a Chapman-Enskog type of procedure, Eq. (8) is solved 
for a double purpose: the evaluation of the kinetic part of the transport coefficients, 
and the explicit determination of the two-particle distribution function f2,  which can 
be expressed as a functional off1: 

f2(rx, vl; rz, v2; t) = f2(rl, vl; r2, v2 Jr1) (9) 

From f2,  the potential part of the transport coefficients is then computed. Examples 
of such calculations can be found in works by Choh and Uhlenbeck, ~2~ Rdsibois, C~1~ 
Severne and Nicolis, ~ Ernst et al., ~23~ Ernst ~2~ and Garcia-Colin et al. ~5~ Let us 
stress also that this method is not without difficulties, related in particular to the 
problem of the subsidiary conditions and the closely connected question of tem- 
perature definition.~22,2~ Moreover, there exists no extension of these works furnishing 
a microscopic definition of hydrodynamic modes. 

Within the framework of a theory linearized around absolute equilibrium, the 
present work is precisely intended to furnish such an extension. We shall show indeed 
that the solution of the linearized, generalized Boltzmann equation (9) can be formu- 
lated as an eigenvalue problem whose five particular eigenfunctions, depending on 
the velocity of one single particle, are microscopic expressions for the above-men- 
tioned hydrodynamic modes. Moreover, we show that the five corresponding eigen- 
values, which tend to zero for q ~ 0, are exactly the five quantities (5), with, however, 
an explicit microscopic expression for the transport coefficients. We shall thus obtain 
the complete transport coefficients, including their potential parts, in terms of Eq. (8) 
only, with no explicit appeal to the functional relation (9). 

One immediate remark is in order about this last statement. Indeed, the first 
BBGKY hierarchy equation provides us with an exact relation between f l  and f~; 
dropping vector notation, we have 

~ f l  + vl ~ = n f dr2dv2 eV 0r12 Or1 f2(rl ' vl ; r2, v2 ; t) (10) 

Thus, once the functional relation (9) is known, one can immediately calculate the 
collision operator which appears on the r.h.s, of (8). However the opposite is not 
true: once C(fl)  is given, we only know the particular combination of f2  which 
appears on the r.h.s, of (10), but f2 itself cannot be determined. Our claim is that it is 
sufficient to have C(fa) in order to calculate transport coefficients to arbitrary order 
in the interaction. 

At first sight, it might appear surprising that a kinetic equation forf l  only suffices 
to calculate full transport coefficients, including their potential parts. Leaving for 
later a proof of this assertion, let us give here a heuristic hint suggesting the plausibili- 
ty of this property? Consider the van Hove function G(r; t); it is defined by 

1 2 f drN dvn 3(r -- r 0 exp(-- iLt)  3(rj) p~(r N, u N) (11), G ( r ;  t) = n 

3 It is gratefully acknowledged that the following argument was developed in the course of a discussion 
with Prof. J. Lebowitz. 
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where p~ denotes the canonical equilibrium distribution: 

p~y= exp- - f iH/ ( f  dr N dvNexp-- f i l l )  (12) 

and L is the Liouville operator. 
Macroscopic physics tells us that, for low frequency and long wavelength, the 

Laplace-Fourier transform of (11) is given by (2,13) 

1 
Gq(w) = n k T x r [ ( 1 -  - ~ )  __,~ -t- q~K/nC~ 1 ~ C~ 1 (13) 

4r ~ C_~ --ico • icq q-- q21~ 

where XT is the isothermal compressibility. 
On the other hand, (11) can be written as 

1 f dvl,fl(rl, vt ; t )  6 ( r ;  t )  = n (14) 

where the time-dependent one-body distribution function f~(rl, vl; t) is defined by 

fz(rz, vl ; t) = N f dr N-x dv N-1 exp(--iLt) ~ 3(rj) P~r 
J 

(is) 

The natural way to calculate fl  is of course first to derive for it a generalized 
Boltzmann equation, which has then to be solved. 4 Thus, if the macroscopic result (13) 
is correct, the exact transport coefficients appearing in (13) should come out, in a 
microscopic calculation, from the kinetic equation forfa alone, solved to second order 
in the uniformity parameter q. 

The remainder of this paper is organized as follows: in Section 2, we illustrate 
the philosophy of our method by considering the case of the dilute gas. We formulate 
the transport problem as the eigenvalue problem associated to the linearized 
Boltzmann equation. We set up a perturbation scheme, to second order in the uni- 
formity parameter q, starting from the basis formed by the eigenfunction of the 
linearized Boltzmann collision operator. The usual expressions for the transport 
coefficients come out as the q2-coefficients of the eigenvalues which tend to zero for 
q ~ 0. Although there is of course no potential contribution to the transport coeffi- 
cients, this example is interesting because it indicates many features of the problem 
without the complications introduced in the general case by many-body effects. In 
particular, it shows that the requirements imposed by the subsidiary conditions in the 
Chapman-Enskog method appear here as natural consequences of a correct perturba- 
tion calculus. Moreover, this example might also be of some pedagogical interest: 
indeed, in the present approach, the calculation of transport coefficients is little more 
than an exercise in perturbation calculus for any student knowing elementary quan- 
tum mechanics. 

4 This has been done explicitly for many models (see Lebowitz et al. ~2" and references quoted there). 
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In Section 3, we recall briefly the generalized Boltzmann equation in a strongly 
interacting system, together with a few useful properties of the operators involved in 
this equation. Whenever an explicit expression is needed, we shall write it in the 
formulation developed by Prigogine and co-workers<~6.17); however, the reader will 
realize that very little many-body analysis is required and that most of the results 
could equally well be deduced by any of the methods available nowadays in non- 
equilibrium statistical mechanics. 

In Section 4, we develop the nondissipative part of the theory, namely we con- 
struct hydrodynamic modes whose eigenvalues are either zero (describing nondissi- 
pative shear and thermal modes) or the sound velocity (sound modes). 

Section 5 is devoted to the dissipative part of the theory, i.e., we deduce an explicit 
expression for transport coefficients. Although it will be clear that these expressions 
involve potential contributions, we shall not prove here in detail the identity of these 
formulas with the corresponding autocorrelation formulas. Indeed, though the 
principles involved have been explained before, ~,~2~ there are some technical details 
which require a many body-analysis deeper than the one we want to present here. 
This point is thus deferred to other publications, ~28) where the interested reader will 
also find a first application of the present method, namely an explicit microscopic 
proof of the well-known equation (13) for the van Hove function G(r; t); here again, 
although in principle straightforward, the calculation involves some subtle points 
which we do not want to discuss here. 

Finally, after some discussion in Section 6, mathematical complements will be 
found in the Appendices. 

2. T H E  D I L U T E  GAS 

In the dilute gas, the kinetic equation (8) reduces to the well-known Boltzmann 
equation. We linearize it around absolute equilibrium and we take its Fourier trans- 
form with respect to r, assuming that q is oriented along the x axis; we get 

etG(v; t) + iqv~fq(v; t) : C~Bf~(v; t) (16) 

where C m is the following linearized integral operator: 

C~BfQ(vz ; t )  

--f~(vl'; t) q0eq(v2 ') -- qoeq(vl').fq(v2'; t)] (17) 

In this equation, ~r(~; v~2) is the two-body collision cross section. 
We then consider the eigenvalue problem associated to Eq. (16), namely 

(C ~B -- iqv~) ~t~S~(v) -- A~nSq(v ) (18) 

Here, ?t~ ~ and T~q respectively denote the eigenvalue and eigenfunction characterized 
by the index n; moreover, we have put the superscript q to keep in mind the explicit 
q-dependence of these eigenvahies and eigenfunctions. 
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Our p rogram is to solve (18) by a per turbat ion calculus, considering (--iqv.~) as a 
small perturbat ion in the long-wavelength limit q --+ 0. 

We have thus to discuss first the properties o f  C ~. Denot ing provisionally its 
eigenfunctions by ~bn(v), we consider the problem 

C@~(v) = k=~ (19) 

where, as everywhere in the remainder o f  this section, we have dropped the super- 
script B (Boltzmann). 

F r o m  the symmetry property 5 

f dv (~oeq(v))-Xf(v) Cgg(v) = f dv ((peq(v))-i g(v) C f ( v )  (20) 

where (peq(v) denotes the Maxwellian distribution, 

1 v z 

qoeq(v) --  (27rkT)3/~ exp 2 k T  (21) 

it is easily verified that  the eigenfunctions q)~(v) can be made to obey the ortho-  
normali ty requirement: 

= 3,~,,,, (22) 
d 

Indeed, this property is automatically fulfilled if A~ ~ :~  ~ , ,  and if the eigenvalues 
are degenerate, we can always apply the Schmidt or thogonalizat ion method.  (~) More-  
over, we assume that  the ~ ( v )  fo rm a complete set. 

In particular, there are five eigenfunctions with zero eigenvalue corresponding to 
the five conserved quantities (1, v, v2). We denote them generically by ~ ( v ) ,  where 
the greek index c~ runs over the integer values 1-5, as wilt always be the case in the 
following. Explicitly, we have 

~z(v )  = ,peq(v) 

Vi 
qbi(v ) --  (kT)X/2 q~eq(v), 

qb s(v) = 2k T 

(23a) 

i = 2, 3, 4 ---= x, y, z (23b) 

We also assume that  the eigenvalues An ~ with n r (a) (i.e., n > 5) have no accu- 
mulat ion point  at the origin. Such an assumption is always implicit in any calculation 
o f  t ransport  coefficients; physically, it implies a separation o f  the relaxation time 
scale, 0 -1 c~(Anr , and the hydrodynamic  time scale, o~[q(kT)Z/~] -z. 6 

5 For a similar property, see, e.g., Chapman and Cowling. t29) 
6 The role of this condition clearly appears in the recent work by Sirovich and Thurber (a~ in the 

study of sound propagation. The present analysis in the dilute-gas case is of course closely related 
to this problem. Moreover, in this paragraph as well as in the general case discussed later on, we 
will be unable to say anything rigorous about the nature of the expansion in the uniformity param- 
eter. Also see Sirovich ~31a) and Uhlenbeck and Ford. (31b) 
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Finally, it is convenient to use an abstract linear vector space notation, by con- 
sidering ~.(v) as the velocity-space representation of the vector I n): 

r  = <v l n> (24) 

In this abstract space, the scalar product between two arbitrary functions I f )  and 
I g)  is defined according to (22), namely 

< f i g >  = f dv (qzeq(v))-l f ( v )  g(v) (25) 

If  we now notice that the operator (C  ~ -  iqv~), although not Hermitian, is 
symmetric, 7 the eigenvalue problem (18) can be solved by perturbation calculus in the 
usual fashion.(a2) In particular, we want to evaluate 

h J  = qh~ 1) + q2A~(2) + "" (26) 

for the set of states (c~), ~ = 1,..., 5, describing the conserved quantities. 
A little care is needed, however, because the set (cx) is degenerate when 

q = 0 (A~ ~ = 0). Thus, we have first to remove this degeneracy by solving exac t l y  
the eigenvalue problem 

(C ~ - -  iqvx) W.(v) = A.~.(v) (27) 

in the subspace spanned by the set (~).8 This is done by expanding I W.) according to 

I%)--- ~ c.~l~) (28) 
vE(c~) 

and inserting this into (27). 
Using the orthogonality relations (22) and the property CZ! v) = 0, we imme- 

diately obtain the following system of linear equations: 

- - i q  Z 6-..~c.. = A.c. . . ,  F, v,/z' ~ (~) (29) 
p 

where 

,.~ = ( t , i  vx /~ )  (30) 

From (23), it is easy to evaluate the coetticients e.~; they all vanish except 

( 1 2  = " 2 1  = (kT) 1/2, 625  = 6-52 : (2kT)l/2 ( 3 1 )  

- K r  We then calculate the zeros of the determinant ] --iq6-.. -- A3.,] ; from these, the 
eigenvalues •. and eigenfunctions ] W.) are readily computed. 

7 This means [see (20)] ( f i  (C ~ -- iqvx)g) = ((C ~ -- iqv~)fl g}. 
s This means that we calculate the eigenfunctions and eigenvalues of the projected operator 
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One finds, after some simple algebra, 

)h = - - i c l ~  ~ 1 >  = 

)t~ = 4 - i c l ~  712)  = 

i~ = o,  ~ >  = 

i~ = o, ~'~> = 

where d ~ is the sound velocity in the 

O/V2)[v '~-  I ~> + 

(1 /v '2 ) [Vg  I l} - 

[ 3 }  

14> 

perfect gas: 

2>4- V'~ 

5>] 

5>1 

5>] 

(32) 

By direct calculation, one can also check that 

= .,~, /z, v ~ (c~) (34) 

= .,~ t~, ~ ~ (~) (35) 

As will be discussed with more detail in the general case (Section 4), 711) and [ W2> 
represent propagating sound waves, I 7z~) and ] T4) undamped shear velocity modes, 
and 1~5) is a thermal mode. Notice that the spectrum (32) remains degenerate; 
however, from (35), there is no matrix element of the perturbation between these 
degenerate states. This is all that is needed in order to develop perturbation calculus, s 

The strategy of the calculation is now clear; in order to avoid degeneracy diffi- 
culties, we have to solve Eq. (18), to second order in q,  with the following unperturbed 
basis: 

ti }P~) a = 1, 2 , . ,  5 (36) 

which of course obeys 

< % 1 % ' >  Kr = 3,,•,, n , n ' e  or q~(a) (37) 

We then use (26) and a similar expansion for [ T J>: 

I~t~ q) = [T~) 4- q l ~ , ) m  4- "'" (38) 

As the calculation proceeds exactly as in elementary quantum perturbation 
theory, we merely give the result. We find 

qh~ 1) = ,~ (39) 

a fairly obvious result, and, in complete analogy with elementary quantum mechanics, 

1 <7t [v~ [T~) (40) 
n~(a) 

9 See, e.g., Bohn~ZS); the only difference with a symmetric operator is that the scalar product ( f [  g) 
is defined without taking the complex conjugate off(v); this is indeed what we have done in (25). 

c (o) = ( 5 k T / 3 ) 1 / z  (33) 
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Notice the restriction n :/= (c 0 which appears in the summation over n; however 
from (35) and (36), we can get rid of this restriction by subtracting the following 
quantity from the third factor of (40): 

( ~  ] - -g~ t W~) = --g~ ~Kr (41) 
nlC~ 

where we have written 

i~ ~ iqg~ (42) 

Then, using the formal relation 

_ _  1 (43) lim ~, I IP~) 1 ( ~ 1  = C - - 7 ~  
e-*0  a l l  n ~ n O  - -  ~ - -  E 

we obtain formally 

1 
A~ (~) = [i0m(~ [ v~ ~ (v~ + g~) I W~) (44) 

With the explicit formulas given in (42) for the eigenfunctions I W~), we can cast 
Eq. (44) into more familiar expressions. After some simple algebra, involving the 
rotation invariance of the operator C ~, we get 

= = - 1 r4w(o, + ( 1 1 ,) x (~ ] 
(45) 

h~) = A~2) = ~,o, (46) 
n 

A~ 2) = -- ~ K (~ (47) 
nC(O) 

where C~ ~ and C~ ~ denote respectively the perfect-gas specific heats at constant 
volume and constant pressure 

C(~ ~ = 3k/2, C~ ~ = 5k/2 (48) 

while the transport coefficients 7/~ and K (~ are defined by 

f 1 
~(o) _ n l i m  ely v~v~ - - k--T C~--r--------~_E v~v, ,~eq (49) 

f dv v 2 1  ( v2 5 k T )  = - n - L -  l ira v~ v~ . ~eq  (50)  ~(0) 
k T 2 2 C ~ - E 2 2 

These two expressions are of course a formal way of writing 

17 
~(o) _ k-T f dv v~v~ $q~ 

x(o) _ n dv 3q~ 
k T 2 v~ -~- 

( 5 1 )  
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where ~q~x~J and S ~  respectively are the solutions of the following integral equations: 

C ~ ~q~Y = v~v~q~eca(v), C ~ ~ = v~ 2 2 ~~ (52) 

In the form (51)-(52), the equivalence of our formulation with the traditional 
Chapman-Enskog is transparent. In particular, we should point out the factor 
--5kT/2 in Eq. (50), which ensures that the inverse operator (C~) -~ has a meaning. Of 
course, the bulk viscosity [ vanishes in both approaches for the dilute gas. 

To summarize the results of this section, we have obtained the sound velocity 
and the transport coefficients of a dilute gas from the eigenvalue problem associated 
to the inhomogeneous Boltzmann equation. They appear as the eigenvalues, cal- 
culated up to order q~, of the hydrodynamic modes, whose microscopic expression 
has also been displayed to lowest order in the uniformity parameter. 

3. THE  GENERALIZED B O L T Z M A N N  E Q U A T I O N  

The extension of the above calculation to arbitrary order in the interaction 
requires knowledge of the collision operator C(fl) [see (8)] which generalizes 
the Boltzmann operator in a strongly interacting system. 

To discuss this point, it is convenient to start at the level of the non-Markovian 
kinetic equation which is obeyed byfq(v; t). Indeed, it has been shown that, within a 
theory linearized absolute equilibrium,fa(v; t) satisfies the following equation: 

t 

~tfq(v; t) + iqvJq(v; t) ---- f Gq(v; ~)f~(v; t --  7) d~" -k ~q(v; t) (53) 
o 

Here, the kernel G~(v; r) is a non-Markovian collision operator and go(v; t) is an 
inhomogeneous term which describes the effect of the initial correlations on the time 
evolution of the one-particle distribution function. 

Equation (53) is well known and can be derived by a variety of methods, in 
particular, by the perturbation method of Prigogine and co-workers, ar,zT) the 
Bogoliubov streaming operator method, aS) and the Zwanzig projection operator 
method. (3a~ For this reason, we shall not give here its detailed derivation, although, for 
completeness, a brief sketch of the proof is given in Appendix 1. 

Whenever we shall need the explicit form of G~(v; r), we shall use it as it comes 
out from the theory of Prigogine and co-workers. (a6,17) We have 

dz exp(--iz~r) ~/t~(v; z) fib(v) (54) Gq(v; "r) c~(v) = ~ c 

where fib(v) denotes an arbitrary function of v and the contour C is parallel to the 
real axis in the upper half-plane S +. The integral operator T~(v; z) is defined by 

7-r~(vz ; z) fib(v1) = ~ dvN-~ (qz , {0}' [ --SL (--3L) I qJ, {0}')~,, 
J = l  

• r 1-I ~0oq(v,) (55) 
i C j  
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Here, L 0 and 3L respectively are the unperturbed Liouville operator, 

N 
Lo = -- i  ~ v~- (56) 

j= l  ~l ' j  

and the perturbation due to the interactions, 

3L = i ~ avk Ov~ 
k < j = l  

Moreover, the following notation has been used for the Fourier transform of any 
function or operator 1~ A(r N, vN): 

l fdrNexp(--i~ks~.)A(rN, vN)exp(i~k{r~) ({k} f A ! {k'}) = ~ (58) 

(O is the volume of the system). 
From translation invariance, we have of course qa = qJ = q, Finally, the sub- 

script "irr" indicates that only "irreducible" contributions should be ratained in (55), 
i.e., all intermediate states involved in the perturbation expansion in 8L should have 
at least two nonvanishing wave numbers. 

As is indicated, Eq. (55) is only valid when z is in the upper half-plane S+; when 
z e S-, one should take the analytical continuation of the expression (55). More 
details can be found in Appendix 1, as well as elsewhere. (~,17,19) 

As already said above, only a few general properties of Gq(v; -r) will be needed 
here; although we shall always estaNish these properties on the basis of  (55). they 
could easily be derived by any of the above-mentioned methods. Moreover, we shall 
not need here the explicit form of ~ ( v ;  t) except for the property 

~q(v; t) -+ O, t >~ % (59) 

(% is the collision time), which has been established before (see, e.g., Prigogine a6) and 
R6sibois(171). 

In order to obtain the generalized Boltzmann equation from Eq. (54), we have to 
investigate the behavior of this latter equation for long times, of the order of (cq) -~ 
or larger, where c is the sound velocity and where q ~ 0. 

Using the property (59) and expandingfq(v; t -- ~) in a Taylor series, 

( -  1) ~ 
f~(v ; t -- r) = Z r"a~f~( v "t) 

~=0 n!  
(60) 

we obtain 

n=o n! ] O~"f~(v ; t) ,  t--~ oo (61) 

10 We use round bras and kets, (1 and [), in order to avoid confusion with states in the one-particle 
velocity space, (I and l). 
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In the right-hand side of (61), we assume that Gq(v; .r) decays to zero for times 
much shorter than t; it is then a matter of some simple algebra to show thatfq(v; t) 
obeys the following generalized Boltzmann equation~S~: 

~f~(v;  t) = ig-2q~q(v; O)f~(v; t) (62) 

where ~q(v; 0) is the following short-hand notation: 

W~(v; 0) = [--qv~ + keg(v; 0)] (63) 

and where Qq is defined by the following implicit equation~l: 

(--  1)" [~"W~(v ; z)] [Q~Wq(v �9 0)] "-~ ~q (64) 
D q =  1 + n! t 0z~ - ~-o ' 

A word of caution is required here: the validity of  the asymptotic form (62) rests 
upon the convergence of the expansion (60), which is not establish in general. For 
example, we have studied recently an example showing the danger of this procedure.~3~) 
However, we are here considering the evolution of the one-particle distribution 
function in the hydrodynamic stage; we thus expect that 

~,"fq ~ (cq) • (65) 

in which case the expansion in the right hand-side of (61) is really an expansion in the 
uniformity parameter q and should thus be rapidly converging. 

In analogy with (18), the eigenvalue problem associated with the generalized 
Boltzmann equation reads 

i ( ~ q )  tP~q(v) = A~q~g~q(v) (66) 

where we have dropped the arguments of ~q(v; 0). 
Adopting the same strategy as in the dilute gas, we expand 12q~  in powers of  the 

uniformity parameter: 

= 1 2"-',, (67) ~q "('20 + q'Qo' + ~q ~Zo 

~q = ~o + q~o' + �89 (68) 

here, the prime means a partial derivative with respect to q; for example, 

Of 2q 
g2~ ~ q=o (69) 

Up to order q~, we thus get from (66)-(68) 

(C z + qV m + q2V~2~) W,q(v) = A~qT-t~q(v) (70) 

zl For an analysis leading to (64) when q = 0, also see George/~6~ 

8zz/21I-3 
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where the following notation has been used: 

g(1)  = i['Q0(--V~C "@ ~01) -~- ~r 

v ,~ = ~[lOg7~0 + t ? 0 ' ( - ~  + % 3  + ~OoT~;'l 

Consider now the unperturbed eigenvalue problem 

c ~ / o &  = a . O l O . }  

(71) 

(72) 

(73) 

(74) 

We immediately find a difficulty which did not occur in the dilute-gas limit: as was 
already stressed by Garcia-Collin et aL and by Ernst (26) the linearized homogeneous 
collision operator C ~ is in general not symmetric. As a matter of fact, though the 
symmetric character of igJo is easily established from the definition (55), namely 

( f [  iWolg)  =- ( g I i ~ o  l f )  (75) 

no similar result holds for if2oTo! In order to circumvent this difficulty, we will be 
obliged to work with a biorthonormal set of eigenfunctions<37); thus, together with 
(74), we will have to study the adjoint eigenvalue problem ~ 

( f t .  ! c ~ = (~- .  1 a~0 (76) 

where ( ~  [ is in general different from (q~, I �9 
Before considering this point in more detail, let us first discuss some properties of  

the eigenvalue problem associated with the symmetric operator 

iWo ] X~) = tzn~ l Xn) (77) 

Here, the analogy with the Boltzmann case treated in Section 2 is complete. In partic- 
ular, the eigenfunctions ] X~) can be made orthonormal: 

<x. I x.'> f dv [~0eq(v)]-z X.(V) X.'(v) Kr ~ ~ n , n  e (78) 

We also assume that the set of functions X~ is complete. 
As can be verified from the definition (55) by the method given by Prigogine (z~> 

and R6sibois (17) when proving an H-theorem, there are five eigenfunctions with zero 
eigenvalue: 

igJ0] X~) = 0, ~ =- 1, 2, 3, 4, 5 (79) 

describing the collisional invariants 1, v, v ~. The I X~) are identical to the I ~) defined 
in Section 2 [see Eqs. (23) and (24)]: 

] X~) ~ I ~ ) ,  a = 1, 2, 3, 4, 5 (80) 

22 We assume that the eigenvalues A~ 0 are purely real; there is no difficulty in extending to the case 
where then An ~ are complex, 
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[see remark before (23)]. Finally, the symmetric character of i~o also implies that 

(~ l i f o  = 0, ~ = 1 ..... 5 (81) 

With these preliminary results in mind, let us now go back to the eigenvalue 
problem (74) and (76). The sets I q~)  and ( ~ I can always be made biorthonormal: 

= a.,. ,  (82) 

and again we assume that these sets are complete. 
Although these eigenfunctions I ~b,~) and ( ~  [ are generally unknown, it is easy 

to construct five right and left eigenfunctions with zero eigenvalue. Indeed, from (79) 
and (80), we have 

CZ[ c~> ~ /D0~0  I c~> = 0 (83) 

]~b~) = t@,  ~ = 1,..., 5 (84) 

Similarly, from (81), we get 

(~  [ .c2~1C * = (~  I ,f2ozi(~0u ---- 0 (85) 

where we assume that the operator/2 oZexists (see Appendix 2). Thus, 

(O~' I = (v  l ~ o  ~, v ~ (~) (86) 

is a left eigenfunction of the operator C z. However, because these functions ( O~' ] 
are degenerate (they all correspond to Aft = 0), there is no reason why they should 
be biorthonormal to I~ , ) .  In order to ensure this property, we have to apply the 
Schmidt orthogonalization method. 

Using the following results, which are demonstrated in Appendix 2, 

(~ t2o 1 t3) Kr = 8,.8, /~ = 1, 2, 3, 4; f l e  (~) (87a) 

<5 f2o 1 1) ( 2 ) 1 / ~ [ @  T- 
ee 3 ng0 

(5 s 1 i) = 0 ,  i = 2 , 3 , 4 ~ x , y , z  (87c) 

(5 1~2o ~ 5) -- 2C~ (87d) 
3k 

it is easy to verify that the left eigenfunctions are 

(~1 ----- (11 (88a) 

( ~  = (i [, i = 2, 3, 4 ~ x , y , z  (88b) 

- -  3k ~2~1/91.__~ Oe 3kT nVo](1 1] (88c) ! J 

which implies that 
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In these equations, we have taken into account that 

( l i f o  1 = <11 (89a) 

( i l  OoZ = ( i l ,  i = - 2 , 3 , 4 ~ x , y , z  (89b) 

which are simple consequences respectively of particle and momentum conservation. 
These eigenfunctions satisfy the required biorthonormality conditions: 

(90) 

Let us point out that in Eq. (88c), we have to subtract nvo = nSdar V(r), which 
only exists for integrable potentials. This difficulty is a consequence of the perturbation 
nature of the definition (55); however, it is not a serious drawback because, in the 
final results, all such terms will exactly compensate each other (see Sections 4 and 5). 

To close this section, let us comment about the physical significance of the 
coefficients of expansion of an arbitrary function I f  q) in terms of the two sets of 
eigenfunctions which we have introduced thus far, namely IX.) (and (X~ t) and 
[ q).) (and ( ~  I). We have, indeed, from the assumed completeness of these two sets, 

Ifq) = ~ (X. If~) f X.) (91a) 
n 

qZ 

Let us limit ourselves to the coefficients (X~ I f  q) and ( ~  ]fq), where, as always, 
o~ = 1, 2, 3, 4, 5. From (23), (80), and (88), we have 

(X1 [f~) = (~x ]f~) = f dv fq(v; t) = nq(t)/n (92) 

where n, clearly represents the density fluctuation. Similarly, 

(Xi I f  q) ( ~  l f~) f v~ n&(t) 
= = a v   L(v; t) = (kr)l/  (93) 

which, up to a trivial normalization constant, describes the velocity fluctuation. 
For the coefficient (X5 I f  q), we find 

= V 2 ~)fq = (2'11/2 3 Tq (94) 

which appears as the natural definition for the kinetic temperature fluctuation Tq (up 
to a trivial normalization factor). On the other hand, 

3a: 12 1/ ! 3a:r 
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has in general, a more difficult interpretation. If  we limit ourselves to a local equilib- 
rium state, denoted by ]f~>, 

[f~> = ~ i ~ . > ( ~ .  [fqz> (96) 

we find from (87) that 

(2)~/~ 3 T~ 
<~5 ]Lz> = 2 T 

(97) 

where the kinetic temperature Tq is defined by (94). However, in the general case (91), 
where the sum extends over all n, we get 

z/2 1 [Tq -]- T~ 1)] E "q (98) 
<~5 I f  q> = 7 r 

with 

) ~ dv -~ ~r I ~n><~n i f  q> (99) 

A more detailed analysis would show that (99) describes the temperature fluc- 
tuation Tq a) coming from the non-local-equilibrium part of tfq); the coefficient Tq (e) 
may then be interpreted as the temperature defined by the total energy density (kine- 
tic + potential) in the nonequilibrium state I f  q).13 However, this physical inter- 
pretation plays no role whatsoever in the following mathematical developments; as, 
moreover, a similar question has already been discussed in the literature from a slightly 
different point of view, (22,26) we shall not investigate this point further here. 

4. R E M O V I N G  T H E  D E G E N E R A C Y  
( N O N D I S S I P A T I V E  H Y D R O D Y N A M I C S )  

In trying to solve the eigenvalue problem (70) for those eigenvalues which tend to 
zero when q -+ 0, we are immediately confronted with a difficulty similar to one we 
have already encountered in the dilute gas, namely the set of unperturbed states I q)~) 
(and (q)~ [) is degenerate. 

We have thus first to remove this degeneracy by treating exactly the eigenvalue 
problems 

(C ~ + qVm)l W.> = ~. ] W.>, Ix ~ (o 0 (lOOa) 

<~. I(C ~ + qV (1)) = ~.<~.  I- /~ ~ (a) (100b) 

in the subspace spanned by the set (a). Exactly as in (28), we expand ] W.> according 
to 

I ~ . >  = Y~ c.~ I qL> (101) 
v~(a) 

z3 The connection between the left eigenfunction of the homogeneous collision operator and the 
energy density was first pointed out in the elegant paper by Garcia-Colin, Green, and Chaos. ~J 
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and we get from (100) a system of five linear equations: 

iq Z E,,.~c,,~ = A.A.." , p., v, t*' ~ (~) 
v 

where we have set 

(102) 

(103) 

As is shown in Appendix 3, the coefficients E.. can be evaluated exactly to all 
orders in the interaction; we find that they all vanish except 

q~ = - - ( k  T) 1/~ (103a) 

1 (Sp) (103b) 
~i --  (kT)  i/2 ~ T 

~25 -~- \--D--T- ] ~ ~ (103c) 
(ep 

(103d) 
%2 = --  nk t 8T  /,~ 2C~ 

Notice that the asymmetric character of the operators involved in the problem 
is explicitly displayed in these equations. 

From the zeros of the determinant associated with (102), one can easily compute 
the eigenfunctions I 7~> and the eigenvalues ~. .  The result is 

~2 = &q 

'~a = O, 

~4 = O, 

,~ = O, 

1 [ (kT)  1/z 
- - 1 1 > + ] 2 ) +  

(3kT/2)x# (8p/aT),~ 
ncCv 

(3k T/2)x/2 (ap/aT),~ 
ncCv 

1 [ (kT)  1/2 1 l> --  [ 2) + 

I T  a> = 13) 

174) = 14> 

175> = c [ -  t~1 7 Ce-T-& I 1) § t~nlr '  5)] 

5)] (104a) 

5)] (104b) 

(104c) 

(104d) 

(104e) 

The adjoint problem (100b) is treated similarly, by expanding ( 7 .  I: 

< ~ . l  = E c~v<~v I (lO5) 
v~(oO 

Following the same steps as above, we find 

h a = - i c q ,  (~a!  = (1[ + ( 2 1 q -  ~--T-) (~5[ 
n 

(106a) 
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1 1 

(106b) 

i s = O, (~3 = (3[ (106c) 

i4 = O, <~a = <41 (106d) 

~5 = 0, <~J5-- = 1 [  - 1 - t 3 ~ 1 / 2  ~ p n c q )  \2] ( ~ - - )  (1 t + (~5 ]j (106e) 

The normalization constants in Eqs. (105) and (106) have been choosen in such 
a way that 

(t~. i !pv ) r:r ~ (o 0 (107) = r v , /~, v 

We also have the important property 

(~ , ,  [~2o[iq(--v ~ + To')] [ W,) = ~, ~Kr (108) 

which can be checked by direct calculation from (103), (105), and (106). Notice that, 
in the noninteracting limit, we recover of course the perfect-gas modes defined in (32). 

Before closing this section, let us look at the physical interpretation of the coetti- 
cients (}P~ I f  q) in the expansion 

If~) = F, ( ~ .  I/~) I W.) + ~ ( ~  [fq)((/)~ ] (109) 
~(~) n~(~) 

In particular, let us study (W5 I f  q); from (106c), (92), and (98), we have 

- -  1 1 ' Tq  (~ ) -  
= - -  + - - f - ]  (110)  

We then use the thermodynamic expression for the entropy density fluctuation, 

Sq --  eq p + e 
T n T  nq (111) 

and the well-known identities 

e~ nc~l~ + ~ 7 

~p ~e 

These formulas allows us to cast (~5 I f  q) in the following form: 

(112) 

(113) 

(114) 
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Up to a trivial normalization constant, the mode I 7"~) (and (7"5 I) thus represents 
an entropy fluctuation which, to first order in q, is time-independent. Similarly, one 
can show that [7"~) and [7"2) describe propagating sound waves, while 17"3) and 
I 7"4) correspond to shear viscosity modes. 

5. T R A N S P O R T  COEFFIC IENTS AS E I G E N V A L U E S  

In order to avoid degeneracy difficulties, we have seen in the previous section 
that the eigenvalue problem (70) should be solved with the following unperturbed 
basis: 

I I 7",> (and <T~ 1), /z ~ (~) 

[7"~) ~ ] r  (and (~ff~[ = (q5  1), nq~(~) (115) 

This basis is biorthonormal: 

( ~ .  t %') ~r n' =&~, . . ,  n, e or ~(~) (116) 

and is assumed to be complete. 
The calculation of the eigenvalues A0 of the problem (70) is then straightforward. 

We expand A~q and ] 7"J)  in the uniformity parameter q: 

a q = q?,~x) + q~A~) + ... (117) 

I 7"~) = I 7".) + q] 7"~)a) + ... (118) 

and we insert these expansions into (70). Using the biorthonormality relation (116), 
one obtains immediately, by a slight modification of the usual perturbation calculus 
(due to the asymmetry of the operators) 

qa(~ 1) = i~ (119) 

where the A~ have been defined in (104), and 

a(ff) = - -  2 (l~c~l V(1) l 7 " )  1 (~P.I V(l) l 7"a) @ (l~t~ ] V(2}] 7"a) (120) 

A more explicit formula for t~ 2) is obtained by using the definitions (72) and (73) 
and by taking into account that 

We get then 

where 

A(~)' = c~ 

7"ol7".) = 0 (121) 

A~ ~) = k~2)" -} - 2@" (122) 

1 <~. I o0(-v~ + 7"o3t 7"~> Y~ < ~  l oo(-v~ + 7'o') 1 7".> L-s. (123) 
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and 

,~(~),, i <~ IoW;'IT'~> + ~<~lo0'(-v~ + %31 7"~> 

+ Y~ <~1~0'7"017"~> 1 <~1(-v~+7"o')t7"~> 
n:/: (a) ~ n O  

(124) 

The reason for this splitting will be justified later on. 
Both A~2), and ~2),, can be further simplified. For A~)', we first get rid of the restric- 

tion in the sum over n precisely as in (40) and we then use the formal relation 

- -  1 
lim ~ I 7"~> 1 <7"= I = lim CZ 
e ~ 0  ~ / ~ n  0 - -  r e ~ 0  - -  E 

This leads to 

1 1 1 
- -  = l ira - -  lim 

,-,o i(Oo~o -~ ie) ,-,o i(~o + ie) $2 o 
025) 

--  1 (--Ux -~- ~/0 t - -  ,Qolga) ] 7"c~> --~;~(2)' = lim<7"~ ] O o ( - - v ~ , . o  § 7"o') i(Wo -t- ie) (126) 

where again A~ = iqg~. 
In order to simplify A~ 2)", we rewrite the second term on the r.h.s, of (129) as 

= i y~ < ~  i ~0'~o ~ 1%><~.  i s%(-~x + ~'o') I ~> 
~, (127) 

while the third term in the same expression is transformed in the following way: 

Z <~ I P-o'7'o I ~.> z~o 
n # ( a )  

= Z < ~  I t?o'~olX)oT'o 1 7".> + < ~  I ~?o(-V~ + 7'0') 17,~> 
n#(~)  

= - - i  ~ ( ~  [ Oo'Oo 1 ] W . ) ( ~ .  I ~2o(- -vx  q- 7"o') I % )  (128) 

where Eqs. (71) and (74) have been used. 
Combining (124), (127), (128), (108), and (42), we get finally 

A(~)- i - -  
= ~ <7"~ I (~o7";' + 2~9o%) [ ~.> (129) 

We now claim that A~ ), as defined by (122), (126), and (129), is identical to the 
q~ part of the eigenvalues (5), with an explicit microscopic definition of the transport 
coefficients ~7, ~, and K. 

In order to give an insight into this property, let us use the definitions (104) and 
(106) of the hydrodynamic modes [ ~ >  and <7"~ [ �9 After some simple manipulations 
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based on well-known thermodynamic identities and elementary rotation-invariance 
properties, we get 

. = - T i n  

a~ ~ = -,</nC,~ 

where the following symbols have been introduced: 

with the definitions 

1 ff] (130a) 
C~) ~ - / "  

(130b) 
(130c) 

~7 = ~7' + ~7" (131a) 

(N + ~) = ( ~  + g)' + (kv + ~)" (131b) 

K = K' -p- K" (131c) 

= ,~' + if:" (131d) 

r 
= r a n  

#r 

K ~ m 

X 

K - -  

1 
lira<3 [ (--v~. + Wo') i(~o q- &) (--v~ ,-i- tPo') [ 3> (132a) 

;n <3 ~ 7S;'l 3> (132b) 
2 ' 

3kn 1 
lira<51 (-v~ + % 3  i(% + ir ( -v~ + W )  2 

n \ 9Tiro l  l>j] (133a) 

T ~n 3ikn4 (5i t/t~ [[ 5>-  (~)1/2--.n--(~)~> I 1>] (133b) 

1 
= - n  l<im<21 ( - ~  + % 3  

i(7* o + ir 
(3k T/2)z/~ (@/aT).  x ~t(--v~ + Wo') ] 2> + ..-c2g* [(kT)~1211> § 

nov 

+ . = - in  

R" = 

X 

,5>]! 
(134a) 

t~ [ (3krlZ)Xi~(@l~r)'~ ]I (2 [ tFo'l 2> - <2 ] (2o'~2o z (kT)  11~ I 1> § nC~ I 5> 

(134b) 

' l 3kn2 lim(5 [ (--vx -1- Wo') i(Ts ~ q_ &) (--vx -4- 7Xo ') 

[ 9 \112 

' c~ t ~ - ) . l  (135b) 
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The correctness of the thermodynamic factors appearing in (130) [compare with 
(5)] strongly suggests that ~ and ~ should be identified with the shear and bulk vis- 
cosity, while we should have 

= ~? (136) 

corresponding to the thermal conductivity. 
This is exactly what we have been able to show; more precisely, we have proved 

that ~/, ~, and ~:, as given by (131)-(136) are identical to the reduced expressions 
obtained by a many-body analysis of the autocorrelation formulas for transport 
coefficients. For example, we have shown that Eqs. (131a) and (t32) are equivalent to 

where 

r t = lira hm ~ ~ dt ~ drNdpNj~ 'Jexp[ - - iL t ]J~up~ q 
TI'*~ -Q-~ , .Qkl  J o 

(137) 

j~U=Vv~vU 1 ~  0V (138) 

However, we shall not reproduce these proofs in detail here. Indeed, on the one 
hand, the principle of these Calculations is not new: it follows very closely the analysis 
given previously by the author (21) and by Nicolis and Severne (22) when showing the 
equivalence between the autocorrelation function method and the traditional kinetic- 
theory approach; and on the other hand, mainly for the case of sound absorption 
(i.e., A~2~), there are some nontrivial technical difficulties which require a more careful 
analysis of the many-body aspects of the problem than we intend to do here; this will 
be discussed in another publicationJ 28~ 

However, in order to suggest how these proofs can be given, we briefly discuss in 
Appendix 3 the shear viscosity coefficient (131) and its equivalence with (137); it will 
appear clearly there that the decomposition of ~/into two parts, ~/' and ~/", corresponds 
to an analogous separation which is naturally made when analyzing (137). 

6. D ISCUSSION 

The central result of this paper is that, formulating the linearized, generalized 
Boltzmann equation as an eigenvalue problem, we have explicitly constructed five 
(right and left) eigenfunctions which, to all orders in the coupling constant, describe 
hydrodynamic modes in terms of one-body distributions. Moreover, the corresponding 
eigenvalues, when expanded in powers of the uniformity parameter, give microscopic 
expressions for transport coefficients which agree with the correlation function 
formulas. 

The idea of getting hydrodynamic eigenmodes, and the corresponding transport 
coefficients, by an expansion of a transport equation in the uniformity parameter is 
not new. It was used in the study of sound propagation in dilute gases, ~3~ in the 
derivation of the correlation function formulas, (~,4,5~ and in the recent mode-mode 
coupling approach to critical transport phenomena) z~) However, to the best of our 
knowledge, no such approach has been developed in terms of one-body distributions 
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in a strongly coupled system. As explained in the introduction, we expect that this 
latter feature will provide a useful tool in the analysis of a variety of problems involv- 
ing long-wavelength divergences. A first, simple but not quite trivial application, 
namely a microscopic derivation of Eq. (13) for the van Hove function, can be found 
elsewhere. (38) 

Although Eqs. (131)-(135) offer in principle new microscopic expressions for 
transport coefficients, it is clear that the present method has not been devised for expli- 
cit calculation of these coefficients. In particular, a tentative density expansion of 
these expressions would lead to the same divergence difficulty as the more traditional 
method. Iv) On the contrary, the usefulness of our method lies in the fact that when- 
ever an expression of the type (ff2qT~) -1, involving the inverse linearized, generalized 
Boltzmann operator, is encountered in a microscopic expression (and this turns out 
to the case in many of these diverging problems!), it does not have to be calculated 
but can be replaced by 

lim(i~a~q) -1 = 2 ]~ .>  1 <tp.[ (139) .~(~) iqg. + q2)t(2) 

where the transport coefficients appearing in A(.~) are replaced by the approximation 
adequate to the problem at hand. This point is further discussed elsewhere (2s) and 
other examples are presently studied. 

A P P E N D I X  1 

Linearized Kinetic Equations for fq(v; t) 
The formal solution of the Liouville equation for the N-particle distribution 

pN(r N, vN; t) can be written as 

-- 1 e e -izt 
pN(r N, vN; t) = ~ ~C dz ~ pn(r N, vN; 0) (Al . l )  

where the contour C is the same as in (54). 
Using the Fourier representation (58) and the formal perturbation expansion 

( L  - -  z)  -1 = ~ ( L  0 - -  z)  -1 [ - - ~ L ( L  0 - -  2)-11 n ( h l . 2 )  
n=0 

we get from (AI.1) 

--1 ~ 1 [ - 3 L  Lo--z l  ] ~ 

x ({k} I pN(r N, rN; 0) ] 0) (A1.3) 

In the expansion involved in (A1.3), we isolate the intermediate states where one 
single wave number qj (qj ~ ql) is excited; we then differentiate (A1.3) with respect 
to time. 



O n  Linearized Hydrodynamic Modes in Statistical Physics 45 

The result is 

Or(q1 [ p~c(r N, vN; t) I O) + iqvz~:(ql [pN(r N, vN; t ) [0 )  

N 
--  1 ~ dz e - i~ ~ (ql I t/t(Z) I q~)(qj I fiN( r~v, VN; Z) [ O) 
27ri c ~=t 

i ~ dz e -i~t ~ (ql [ ~(z) I{k})({k}] pN(r N, vN; 0) [ 0) (A1.4) 
2-7ri c {k} 

where ~N(r u VN; Z) denotes the Laplace transform of p~T(r N, vN; t). The so-called 
collision operator (qlLT(z)l  q~) and destruction operator (qzl~(z) l{k})  are respec- 
tively defined by 

(qzl W(z)[ qj) = ~ (ql [ - -3L (Lo l~z  (--~L))" [ q,)i~ (A1.5) 
'rt=0 

where the subscript "irr" has the same meaning as in the text, and 

(q~ ]~(z)I{k}) = ~ (qa [(--SL 1 " ,,=~ ~ )  [{k})i,.,. (A1.6) 

The subscript "irr" implies here that not only the intermediate states of (A1.6), but 
also the final state {k}, have at least two nonvanishing wave numbers. 

Within the frame of a linearized theory, one can assume, at t = 0, the factoriza- 
tion property 

N 1 
(qz i PN( rN, vN; 0) ] 0) = f~(v x ; 0) ~ ~oeq(vi) N~QN (AI.7) 

where f~(vz; 0) is the one-particle distribution function of particle 1. In the thermo- 
dynamic limit, it can be proved that this property persists for t > 0. We then insert 
this result into (A1.4) and we integrate over (N -- 1) velocities; the result is 

a,L(vl ; t )  + iqvz~fq(vx ; t) - 
1 

dz 8-iztlllq(V 1 ; Z)~(V 1 ;Z) 
2~i c 

l 
dz e- iZt~(vl  ; z) 

2r c 
(A1.8) 

where ~q(vl; z) is defined by Eq. (56) and where, when z is in the upper half-plane, one 
has 

z) = N ~  y f dv N-~ y' (q~ [ .~(z) ]{k})({k} pN(r N, vN; O) ] O) 2q(Vl 
{k} 

(A1.9) 

For z e S-, Nv(v; z) is defined by the analytical continuation of (A1.9) for reasons 
which are discussed in detail elsewhere. (Iv) 

By Laplace inversion, Eq. (A1.8) immediately leads to Eq. (53) in the text. 
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A P P E N D I X  2 

Properties of ~o  1 

We here establish Eqs. (87). 
The starting point is the definition (64), which we consider only at q = 0. We 

multiply this equation on both sides by 12o ~, and get 

3~o(V; z) ~=o -- O7Io (A2.1) s i = 1 + 0z 

where 

O = ~ ( -  1)n 0 ~ o  ] (f2oWo) "-2 s 0 (A2.2) 
~=~ n! ~z~ [~=o 

As we only need <a [ ~2oi1/3> where ] a> and lfi> are eigenstates of iW o with 
zero eigenvalue [see (79) and (80)], we have 

: ~ K r  (~  l Oo ~ I/3) ~,~ + (~ I - -  

The definition (55) leads immediately to 

(1 OT~ z) ,=o az I/~> = o 

<i oT'#;az z) ~=o ' ~/~> = o, 

O~Uo(V; z) z=o Oz I/~> (A2.3) 

(particle conservation) (A2.4) 

i = 2, 3, 4 (momentum conservation) (A2.5) 

We are thus left with (5 ](0Yto/gZ)z=o [ fi); isolating the front factor --3L(Lo - z) -1 
in (55), we can write 

OTo(V; z) 1 o 1 
- 2  ~z (0 [ --~L ~ I {k}) 

• ({k}l R(z) I 0) ~ '  (vj [/3) I-[ 9eq(v,) ,=o (A2.6) 
j i V j  

where R(z) is defined by 

({k}] R(z) l 0) = ~ ({k}l-- ,L [ L ~ - - z  ( - - 'L) ]  n[ 0),~r (A2.7) 
ez~0 

and the prime on the sum over j indicates that we should only retain those particles j 
that appear in the dynamical parts ~L and R(z). This is imposed because ~0 is the 
q = 0 limit of the operator ~ffq, where a similar condition explicitly occurs [see (55)]. 

We then transform (A2.6) by: (1) taking into account the symmetric role played 
by all particles; (2) using the explicit representation 

]{k}) = l~>,_kV~(O 0 ] 1 3ks, kKr RKr ~Kr (ol 3L 
(A2.8) 
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(3) performing an integration by parts over v~ and vt; (4) taking the derivative with 
respect to z. 
These operations are straightforward and lead to: 

(5 t  0z ~=o[/3> = \31 k T  2Nf2 E Z f dvN V~(k, , - k ,  ] ~ ,=ol0) 
s # t  k=/:O * 

1 (k~ --k,  { R(0) I 0) ~ '  <vj {t3> I-/ 9)eq(/)J) 
q- k(v~ -- vO -- iO ' j i#r 

(A2.9) 

The first term in (A2.9) vanishes after integration over v N because OR(z)/Sz 
starts with ~L; in the second term, we get 

1 
k(v~ -- v~) -- iO (k~, - -k t  ]R(0) 10) ~ (ks, --k~ I c~ F 0) (A2.10) 

where W (creation operator) has been shown previously to play an important role in 
the determination of the equilibrium correlations in a dense system; as is proved 
elsewhere, (m one has indeed 

N 

(k~, - -k ,  [WIO) I-[ qzeq(v,) = "QN(k,, - -k t  I ~vq I 0) (A2.11) 

We thus get 

STo(V; z) 

• (k~, --k~ t c~ 1 0) ~ '  <vj l fi> iV[ q~eq(v~) (A2.12) 
j i # j  

From this equation, the calculation of (5 I[STo(V; z)/~z]z=o l/3> is very direct; 
indeed, with [see (22)-(24)] 

(vj ! 5> = T~-~- ~eq(vj) (A2.13) 

and 

f dv~ <vj ] 5> = 0 (A2.14) 

we can transform (A2.12) according to 

S~o(v; z) 2 1 S ( ~r 
(51 Sz 0 15) -- 3 kNf2 ST ~ ~ d dvN V~(ks' - k t  ] cb~ ] 0) YI q~eq(vi) 

k # O  s > t  / = 1  

2 D N-1 S ( 
-- 3 k N  ST Z Z g dv N Vk(k~, - k ~  ] p}q I O) 

k # O  s > ~  

= 2 (C 3_~_k t (A2.15) 
3k \ Z. ] 

where use has been made of (A2.11). 
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The calculation of (5 [[eWo(v; z)/Oz]~=o I 1) follows similar fines and leads to 

~T0(v;z) [2~ [ 1  ( )~e 3 nVo] 
(5I ez ~=011) = tS//~ [~-f (A2.16) 

--~-n . r  2 kV 1 

Equations (A2.3)-(A2.5), (A2.15), and (A2.16) are equivalent to Eqs. (87). 

A P P E N D I X  3 

Evaluation of (a  I w0' I ~)  and Discussion of the Shear Viscosity Coefficient 

From (88), (89), and (31), the only nontrivial problem in the calculation of ~.~ 
[defined by (103)] is the evaluation of (a l To' I fl). 

As a matter of fact, particle conservation and rotation invariance readily show 
that only (2i T0'[ 1), (2[ To't 5), and (5 I T0' I 2 > do not vanish. 

We devise here a method which allows us to compute easily (21 7to't 1) and 
(2 I To'[ 5) and which, at the same time, provides us with some important hint in 
the analysis of the shear viscosity alluded to in Section 5. A similar method would 
permit the calculation of (5 ] ~0' [ 2) and the discussion of the thermal conductivity. 

Let us consider the matrix element (i[ ~o' i r  where i = 2, 3, 4, while I ~ )  is 
an arbitrary one-velocity function. 

We have from (55) 

( i  ] 1/t g i)' ] r ) - -  ( k Z ) l / 2  ~q [ f  dvN U1, i 

N N 

XX 2 
j=l 1=1 k:/:O,--q 1 

(qxl -- 3Ll~ l kl + qz , --kj) 

X (k 1 + ql, --k~ I (d I q,)(v, l ~ )  I-I 9~q(v~)] (A3.1) 
s # ~  q~O 

where we have explicitly displayed the first vertex 3L in the collision operator 
(ql ! 7t [ q0; we thus have 

[ 1 ]o 
(kl + ql, --kJ[Cg[q~) = (kz + qz , --kj l Lo _ ie (--SL) [ qt)i~,. (A3.2) 

n = l  

We notice that all particles play the same role in (A3.1); we may thus write 
successively: 

1 ~ [ 1  kk f kVk (i1 T~ ] q b) - -  (kT)l/2 ~q -N- ~" dvN V l ' i  • OYl 
l = l  j = l  k#O, - -q  l 

N 

• ~ (k~ + q~, --kj t~lq~)(vt  I q)> l-I 5~ 
t = l  s ~ t  q=0 

-- (kT)~/2 aq ~ Z 2 dvN kiV~ 2 [(kz + qt, --k~ IV I qt) 
l> j=l k:/=O,--q z ~=i 

- (k; + qj, --k~ I ~e I q0]<v~ Ir  [I ~eq(v3] 
s =/= t q=O 
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, f -- (kT)~/~- Oq ~ ~ ~ dvN[kiV~ -- (k + q)~ Vk+q] 
/>d=l k#O,- -q  t 

N 

X ~ (k~ + q~, --kylCglqt)fvt I ~ )  I-[ ~eq(vs)] (13.3) 
t=l s ~ t  q=O 

In order to get this last equation, we have used the dummy character of the 
summation variable k. We now remark that the bracketed quantity in (13.3) vanishes 
if q = 0; the derivative with respect to q is thus immediate to take, and we are lead 
to 

1 1 ~ fdvg(o]j~u,Zl{k})({k}lcd[O)Z,(vt[(i)) 1-[ ~eq(v~) 
<i t ~o" t ~> -- (kT) 1/~ N { o t ~ t  

(A3.4) 

where j~v.v is the potential part of the stress tensor (138). 
From this formula, the calculation of <2I W0'l 5,'> and <21 Wo'] 1> exactly 

follows the method used to treat (A2.12); one obtains after some simple algebra 

and 

(2 I Wo' J 5) = -- (~)1/2 (kT)l/2kn [ (~T-)~ - - 0 P  kn] (A3.5) 

1 ep nVo] (A3.6) (21Wo't t } -  (kT) l /2[(~n)T--kT--  

Applying the same treatment to (5 I gt0' i 2), one finds 

, 
(A3.7) 

where h is the enthalpy density. 
From Eqs. (A3.5)-(13.7), the value given in the text for the coefficients e,, are 

easily checked. 
Moreover, as already mentioned. Eq. (A3.4) can be used in the discussion of the 

equivalence between the shear viscosity as defined in the text by Eqs. (131a) and (132) 
and the result deduced from the correlation function formula (137). To simplify, let 
us limit ourselves to ~7'; it is given by 

1 
~7' = --n timo(3 [ (--vx + ~o') iQ/_~o + i~) (--v~ + 710') I 3) (13.8) 

The quantity (3 ](--v~ + W0' ) can be obtained by adding to (A3.4) (where I q3) 
was left arbitrary) the trivial kinetic part (3 I(--v~): 

<31 (-vx + ~'o') --1 1 duN[(O yxu,K O) 
(kT) 1/2 N f [ [ 

+ ~ (0 ] j,v,v r{k})({k}] c~ I 0)] ... 
{k}~ao 

(A3.9) 

822/2h-4 
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where j~ ,K is the kinetic part of the stress tensor. On the other hand, the quantity 
(--v~ -k T0')l 3) has been discussed in detail elsewhere by the authort~Z); with a slight 
change in the notation, it was shown that 

--1 
( - -vz  -~- ~[io') ] 3)  ~- (kT)l/~ f dv ~r-1 ,QZr ] jZVp~q [ O) 

+ ~ ( 0 l ~  I{k))({k)l J~up~vq 1 0) (A3.10) 

Since the potential part J~y, v has no component (0 ] J~u, v I 0), while the kinetic 
part j ~ , K  has no component (0 I j~ , l r  I{k}), we get formally from (A3.9) 

, 1 " f d v  ~r J~y O) (0 J~u O) = .Q-k~l~m [(0 [ 1 + ~ I I{k'))({k')7 ~ I 
{~'}~o 

1 
• i[(0 W I 0) § i~] [(J~UP~q)~ -}- (A3.11) 

where linearization has not been explicitly written, and where 

(J~VpeNq)(k) : ~2~({k)[ J~YP~r q I 0) (A3.12) 

Equation (A3.11) is identical to Eq. (3.18) of Ref. 21; there, it was obtained as 
one of the two contributions coming out of the many-body analysis of the correlation 
function formula (137); in order to show the complete equivalence, we have established 
that the second contribution is identical to ~7", as defined by (132b). The calculation 
proceeds along similar lines but will not be reproduced here. 

Similarly, we have given such an equivalence proof for both the thermal con- 
ductivity and the sound absorption coefficient / ' .  In this latter case, some subtle 
technical points arise, which are treated in a separate publication. (2s) 
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